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Colloidal suspensions of Laponite clay platelets are studied by means of Brownian dynamics simulations.
The platelets carry discrete charged sites which interact via a Yukawa potential. As in the paper by S. Kutteret
al. [J. Chem. Phys.112, 311(2000)], two models are considered. In the first one all surface sites are identically
negative charged, whereas in the second one, rim charges of opposite sign are included. These models mimic
the behavior of the Laponite particles in different media. They are employed in a series of simulations for
different Laponite concentrations and for two values of the Debye length. For the equilibrium states, the system
structure is studied by center-to-center and orientational pair distribution functions. Long-time translational and
rotational self-diffusion coefficients are computed by two different methods, which yield very similar results.
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I. INTRODUCTION

Clay colloidal suspensions appear in several industrial
processes. Examples are found in the ceramic, paint, cos-
metic, and petroleum industries, among others[1,2]. In many
of their applications, the interest in them is driven by the
diversity of behaviors they show. These go from a Newton-
ian liquid up to a viscoelastic gel; they may even form a
flocculated dispersion, depending on their type, size, shape,
concentration, and medium composition[3–6]. Hence, un-
derstanding their behavior is both a challenge and a neces-
sity.

Clays are lamellar mineral crystals. In particular, Laponite
particles are three-layer synthetic clays composed of a cen-
tral magnesium sheet sandwiched by two silica sheets[7,8].
This structure forms thin platelet-shaped lamellas of diam-
eters close to 25 nm and thicknesses of 1 nm, which can be
separated to form a water dispersion. Due to existing isomor-
phous substitutions of a fraction of divalent magnesium ions
by monovalent lithium ions, the net charge of the Laponite
flat surface is negative. The edge surfaces of the Laponite
particles, however, behave quite differently. Here, the tetra-
hedral silica sheets and the octahedral magnesia sheets are
disrupted, leading to the adsorption of specific ions which
rule the surface charge. Hence, depending on the media com-
position, the edge surface may be negatively or positively
charged.

We should mention here that the regular size and shape
that characterizes this synthetic clay make it very convenient
for experimental studies. In fact, lately there has been a lot of
experimental work on Laponite dispersions by means of
scattering and rheological techniques[5–7,9,10]. On the
other hand, although the one-dimensional swelling of hy-
drated clays has been very well studied by computer simula-
tions[11–14], a theoretical description of their suspensions is
not very developed. This is at least partially due to the fact

that the highly anisotropic shape of the particles makes the
interparticle potential extremely complicated. There are,
however, three very interesting theoretical works by Dijkstra
et al. and Kutteret al. [15,16]. In the first two, the Laponite
particles are modeled by platelets which carry a constant
electrostatic quadrupole moment. This approach, although
crude, was capable of predicting a sol-gel transition, in good
agreement with experimental observations. The third work, a
molecular dynamics study, presents a much more realistic
model, where the platelets carry a given number of charged
sites homogeneously distributed over their surfaces. In addi-
tion, the particles are assumed to be dispersed in water, and
hence, the screened electrostatic interaction is modeled by a
Yukawa potential. Another important feature of this model is
that it allows the study of the effect of rim charges of a
different nature than the surface ones. In this way, the flat
and edge surfaces of the Laponite particles are modeled.

In this paper, we further study the behavior of the Lapo-
nite suspensions by means of Brownian dynamics(BD) con-
sidering a model similar to the one employed by Kutteret
al.. This technique has the advantage of considering the ef-
fect of the solvent, although we still do not consider the
much more complicated hydrodynamic interactions between
platelets. Hence, the dynamical and transport properties have
a better physical grounding. This allows us to study the be-
havior of the diffusion coefficients as a function of the plate-
let concentration and the Debye length. Nevertheless, the ac-
curacy of the obtained diffusion coefficients is expected to
decrease with increasing platelet concentration, due to the
neglect of hydrodynamic interactions. On the other hand, our
model impedes platelet interpenetration by considering a
large number of short-ranged repulsive sites. As we will
show, this plays an important role in the structure of those
systems that show a tendency to aggregate.

The paper is organized as follows. The model for the
Laponite particles and the implementation of the BD simu-
lation is described in Sec. II. Section III is devoted to the
presentation and discussion of the results. In Sec. IV we
discuss the implications on the local structure and on the
self-diffusion coefficients of the pair potential as a function
of the number of charged sites. Finally, in Sec. V we present
our conclusions.
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II. THE MODEL

A. Pair potential

As mentioned in the preceding section, Laponites are syn-
thetic clay particles with a highly regular geometry similar to
a disk of diameters'=25 nm and thicknesssi=1 nm,
which have the following unit cell formula:
Na0.7

+ fsSi8Mg5.5Li 0.3dO20sOHd4g−0.7. When dispersed by wa-
ter, the sodium ions are released from their surface, leading
to a net surface charge ofQT<−700 e, and hence, to 700
charged sites. Hence, a first model for the Laponite is given
by distributing this charge over its surface(model A). For
acid conditions, however, due to the absorption of certain
specific ions on the particles edges, they may also show a
local positive ring charge whose value may reach 10% of the
absolute value of their net charge, depending on thepH of
the suspension. In this case, we assume a negative charge
Q−<1.1QT and a positive chargeQ+<−0.1QT uniformly
distributed on the flat and edge surface of the Laponite par-
ticle, respectively(modelB).

To obtain the thermodynamic and transport properties of
such a suspension we modeled the Laponites by rigid ar-
rangements ofNTs=469d spherical particles of diametersi,
as shown in Fig. 1. In this way, the Laponite-Laponite inter-
action energy is evaluated as the sum of single site-to-site
Yukawa type interactions, namely,

fab
sYd ; o

i=1

NT

o
j=1

NT qiaqjb

er ia jb
exps− kDria jbd, s1d

where asÞbd is an index associated to the Laponites,e
=78 is the water dielectric constant at room temperature,qia
is the electric charge assigned to each bead,r ia jb= ur ia−r jbu is
the site-to-site distance, andr ia is the vector located in the
center of each charge. Of course, the net charge of each
Laponite platelet isoi=1

NT qia=QT. Finally, kD=1/l is the De-

bye screening parameter andl the Debye length. They are
given by

kD
2 = 1/l2 =

4psn+z+
2 + n−z−

2de2

ekBT
, s2d

wheren+,n−,z+, andz− are the concentrations and valences
of positive and negative ions andkBT is the thermal energy.

At this point, we should mention that Kutteret al. have
used several rigid hexagonal bead models to implement the
interaction between these types of particles. They checked
the form factor[defined by Eq.(2.6) of Ref. [15]] and con-
cluded that a 61 bead discrete model provides a good ap-
proach for the form factor of a solid disk. They also per-
formed a test to study the effect of discretizing the chargeQT
on the surface of spherical particles. For this purpose, they
carried out two molecular dynamic simulations, one for a set
of spheres with their charge continuously distributed on their
surface and the other for the same set but with discretized
charge, and calculated the radial distribution function for
each case. They observed a good agreement between the
radial distribution functions of both systems for a discretiza-
tion of 61 sites and for the same total chargeQT. They con-
cluded that the discrete representation of the chargeQT
through 61 sites is a good approach to the continuous distri-
bution of the chargeQT on the surface of the particles. Nev-
ertheless, it is important to emphasize the following facts:
the radial distribution function is not very sensitive to
changes in the charge discretization over spherical particles
due to their symmetry and the Debye length employed for
performing the test(58.9 nm) is much larger than those used
for the study itself(,9,3, and 1 nm). Hence, there is not any
guarantee that systems having other Debye lengths and par-
ticles with other geometries such as platelets should also be-
have properly if their particles are discretized in a similar
fashion. As a first step, however, we also assume that a 61
site charge discretization may approach the 700 site discreti-
zation of the chargeQT on the surface of the platelets. Thus,
the subset of beads where we assign the electric chargeqia
=QT/61 is shown in Fig. 1 as dark spheres, whereas the light
ones are assignedqia=0. In this way, we have defined model
A of a Laponite particle characterized by a completely repul-
sive potential, i.e., for a high hydroxyl concentration.

In order to take into account the effect of the positive
electric charges on the Laponite edges that appear in acid
media, we define modelB by

qia = 5Q+/N+ dark spheres on the edge,

Q−/N− inner dark spheres,

0 light spheres,
6 s3d

where N+=24 andN−=37. Here, we define the number of
charged sites byNq;N++N−.

This last model may lead to particle interpenetrations and
numerical instabilities as a consequence of the attractive in-
teractions between the positive and negative charges of dif-
ferent particles. Thus, in order to avoid particle interpenetra-
tion we imposed a short-range potential given by

FIG. 1. Bead model formed byNT=469 spheres of diametersi

for evaluating the Laponite-Laponite interaction energy. As can be
seen, the arrangement geometry is a disk of diameters'=25 nm
and thicknesssi=1 nm.
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Here, theC value is adjusted in such way that the total in-
teraction energy between a positive and negative site at con-
tact (1 nm) is around 1kBT, wherekB is the Boltzmann’s
constant andT=300 K is the temperature. Hence, the total
interaction energy in aN platelets system is given by

f ; o
a=1

N−1

o
b=a+1

N

sfab
sYd + fab

sSdd , s5d

whereas the net force acting on sitei of plateleta is

F ia = − o
b=1

N

o
j=1

NT

=ia jbSqiaqjbexps− kDria jbd
er ia jb

+
C

ria jb
6 D s6d

and the net force acting on the center of mass(c.m.) of plate-
let a is

Fa = o
i=1

NT

F ia. s7d

Finally, the net torque acting on the c.m. of plateleta reads

Ta = o
i=1

NT

sr ia − Rad 3 F ia, s8d

whereRa is the c.m. position of plateleta.

B. Brownian dynamics algorithm

In an ordinary BD simulation, the evolution of the c.m.
and the orientation of a nonspherical particle is given by the
integration of the appropriate set of Langevin equations. In
the simplest case of spherical particles, this methodology
was developed and implemented by Ermak[17]. In this
work, the methodology is adapted for updating the c.m. po-
sitions of the platelets. To update the orientation of the plate-
lets, however, there are two equivalent methodologies that
simply differ on the selection of the reference frame. The
first one uses the body reference frame to describe the BD.
This methodology is, for example, employed by Löwen[18]
for a set of spherocylinders. The other one uses a fixed ref-
erence frame to solve the equations of motion. This last is
employed by Heyes[19–21] for a set of particles modeled by
a linear arrangement of beads. In this work we adopted the
first methodology, and thus for each platelet, the c.m. posi-
tion is decomposed into a parallel and two perpendicular
components to the axial axis through

Rssdstd = Astd ·Rsbdstd, s9d

where Astd is the rotation matrix associated to the corre-
sponding platelet. This matrix relates the two descriptions of
the same object, i.e., the c.m. vector. The descriptions of
vectorRstd are denoted byssd andsbd corresponding to sys-
tem and body references, respectively. Moreover, the axes of
each body-reference frame are parallel to the principal axes
of the corresponding platelet. In particular, thez axis is along

the axial axis of the particle and so, the description of vector
Rstd in the body-reference frame turns:

Rsbdstd = sR'x
,R'y

,Rid. s10d

The same procedure is done for the total forceFstd acting on
the c.m. of the platelet due to the interactions with the other
platelets. Hence, after obtainingF ssdstd by means of Eq.(7),
relationship

F sbdstd = A−1std ·F ssdstd s11d

is applied for obtainingF sbdstd=sF'x
,F'y

,Fid. Thus, for a
finite time stepDt, the evolution of the platelet’s c.m. is
given by

DRp
sbdst + Dtd <

Dp
T,0

kBT
Fp

sbdstdDt + DRp
sgdsDtd, s12d

wherep='x,'y, and i. In this equation,D'x

T =D'y

T andDi
T

are the free translational diffusion coefficients of the platelets
whose values are discussed in the following section. In the
same equation,DR

p

sgdsDtd is the random displacement of the
particle c.m. that appears due to the solvent transference of
momenta. This random displacement has a Gaussian distri-
bution with zero mean and variance

kuDRp
sgdsDtdu2l = 2Dp

T,0Dt. s13d

Next, the c.m. position is updated by

Rssdst + Dtd = Rssdstd + Astd · DRsbdst + Dtd. s14d

Note that in Eq.(14) we use the rotation matrixAstd instead
of Ast+Dtd. This is because we split the complex evolution
of the platelet in two parts. The first part, previously ex-
plained, accounts only for the pure c.m. translation. The sec-
ond, to be explained, accounts for the pure rotation around
corresponding Laponites’ axes having their c.m. positions
fixed. Hence, this procedure updates all matrixesA.

For this purpose, the torqueTstd is calculated by means of
Eq. (8) and is decomposed to its corresponding body refer-
ence components using

Tsbdstd = A−1std ·Tssdstd. s15d

Thus, for the same finite time stepDt and a given platelet,
the evolution of each angle around the corresponding plate-
let’s principal axis are given by

Dwpst + Dtd <
Dp

R,0

kBT
Tp

sbdstdDt + Dwp
sgdsDtd, s16d

where the random angular displacementDw
p

sgdsDtd has a
Gaussian distribution with zero mean and variance

kuDwp
sgdsDtdu2l = 2Dp

R,0Dt. s17d

The anglesDw'x
,Dw'y

, and Dwi [Eq. (16)] are then em-
ployed for constructing the matrixes associated with the ro-
tation around each platelet principal axis. These matrixes
read
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A'x
st + Dtd = 11 0 0

0 cosDw'x
− sinDw'x

0 sinDw'x
cosDw'x

2 ,

A'y
st + Dtd = 1 cosDw'y

0 sinDw'y

0 1 0

− sinDw'y
0 cosDw'y

2 ,

Aist + Dtd = 1cosDwi − sinDwi 0

sinDwi cosDwi 0

0 0 1
2 . s18d

Given an arbitrary vectoru fixed in the system-reference
frame, the rotational matrixDA<A'x

A'y
Ai relates its repre-

sentation in the body reference at timet with its representa-
tion in the body reference at timet+Dt by means of

usbdstd = DAst + Dtd ·usbdst + Dtd. s19d

Substituting the definition of the rotational matrix at timet,
Eq. (9), into Eq. (19), the updating rule for the rotational
matrix A to time t+Dt is found to be

Ast + Dtd = Astd · DAst + Dtd. s20d

It is important to mention that the previous definition of ma-
trix DA will induce an error since the matricesA'x

,A'y
, and

Ai are not commutable. Nevertheless, the mean error be-
comes negligible for a small enough value of the time step
Dt used during a long run of the BD simulation[20,22].

Finally, and similarly to the above described translational
case,D'x

R =D'y

R and Di
R are the free rotational diffusion co-

efficients of the platelets. In the following section, we focus
on them in order to complete the methodology.

C. Free diffusion coefficients

The BD simulation technique requires the knowledge of
the free diffusion coefficients of the considered particles. In
the case of a spherical particle the free translational diffusion
coefficient is given by Einstein’s identity and the Stokes law
value, i.e.,D0

T=kBT/3phs, wheres is particle diameter and
h is the solvent viscosity(h<1.002 cP for water at room
temperature[23]). In this simple case, the free rotational dif-
fusion coefficientD0

R is directly related to the free transla-
tional diffusion coefficient bys2D0

R/3=D0
T [24]. These coef-

ficients are used further in this subsection to normalize the
free diffusion coefficients of the particles of interest.

As previously mentioned, the Laponite platelets are com-
posed ofNT identical spheres which form a rigid arrange-
ment. This is illustrated in Fig. 1. Nevertheless, this bead
model is employed exclusively to evaluate the configuration
energy. From a hydrodynamic point of view, the Laponite
platelets are modeled by oblate ellipsoids with diameterssi

ands'. These diameters are parallel and perpendicular to the
axial axis, respectively. For such particles, its aspect radio is
usually defined byk;s' /si, since the hydrodynamic
theory leads to analytic expressions for the diffusion coeffi-
cients as a function of it[25,26]. They read

D'
T,0/D0

T =
3

8
F s3k2 − 2dS− 1

k2 − 1
G ,

Di
T,0/D0

T =
3

4
F sk2 − 2dS+ 1

k2 − 1
G ,

D'
R,0/D0

R =
3

2
F sk2 − 2dS+ 1

k4 − 1
G ,

FIG. 2. Radial distribution function(continu-
ous line) and angular distribution function
(dashed line) for model A, l=1 nm and(a) r
=0.01,(b) 0.05, (c) 0.09, and(d) 0.13.
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Di
R,0/D0

R =
3

2
F k2S− 1

k2sk2 − 1dG , s21d

where

S= sk2 − 1d−1/2arctansÎk2 − 1d . s22d

In Eq. (21), D'
T andDi

T are free translation diffusion coeffi-
cients that correspond to displacements that are perpendicu-
lar and parallel to the particle axial axis, respectively. Simi-
larly, D'

R andDi
R are free rotation diffusion coefficients that

correspond to angular displacements around axes that are
perpendicular and parallel to the particle axial axis, respec-
tively. Naturally, the free diffusion coefficients associated to
our Laponite model corresponds tok=25. Thus, the method-
ology for the BD simulation that was introduced in the pre-
ceding section is completed.

III. RESULTS

A. Simulation details

The computations were performed by considering the
Laponite models previously described. All systems studied
consisted ofN=100 platelets, which were randomly located
and oriented in a cubic simulation cell of volumeV. For
avoiding platelets to be interpenetrated in the initial configu-
ration, we resituate those that overlap with others. In order to
identify them a full site to site test was performed. The tem-
perature was chosen to beT=300 K and the solvent viscosity
h0=1.002 cP, which corresponds to water under this tem-
perature. The volume fractionr (defined asNVp/V, where
Vp=ps'

2 si /4 is the platelet volume) was varied in the range
[0.01, 0.15] in steps of 0.02 and the Debye lengthl was
fixed to 1 and 3 nm. This makes 16 simulations for each
model. Periodic boundary conditions were considered and a
cutoff equal to half the edge size of the cell was imposed.
The particle trajectories were generated according to the al-
gorithm defined in Sec. II B. Energy was monitored in the
progress towards equilibrium.

For each condition set an equilibration run of 105 steps
was performed, during which the value of the time stepDt
was adjusted in such a way that the mean-square displace-
ment of the Laponites’ c.m. positions was approximately
0.01 nm2. The obtained time-step mean values after equili-
bration range in(0.003, 0.004) ns in all cases except for
model B, with l=3 nm andr=0.13 and 0.15 which were
around 0.0015 ns. It is important to mention that the adjust-
ment of the time-step was carried out only during the equili-
bration process. During the formal run of 23105 steps, the
value of the time step remains fixed and equal to the mean
value previously found.

B. Structural properties

The quantitative characterization of the local structure of
the suspension is provided by two different pair distribution

FIG. 3. Typical configuration for modelA, l=1 nm, andr
=0.09.

FIG. 4. Radial distribution function(continu-
ous line) and angular distribution function
(dashed line) for modelA with l=3 nm and vol-
ume fraction(a) r=0.01, (b) 0.05, (c) 0.09, and
(d) 0.13.
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functions. One of them is the radial distribution functiongsrd
[27] which describes the correlations between the c.m. of a
platelet with the c.m. of another at the radial distancer. The
second one is the angular distribution function, which is ob-
tained by taking the statistical average of the second Leg-
endre polynomial for a fixed distancer = uRa−Rbu between
the c.m. of two platelets, namely,

psrd ; K1

2
s3 cos2usrd − 1dL , s23d

wherek¯l means a statistical average over all pairs. Here,
usrd is the angle between the normalsna andnb of platelets
a andb. In this way, when neighboring platelets are nearly
parallel the value ofpsrd is close to 1, whereas for a
T-shaped configuration it is close to −1/2.

The results forgsrd and psrd corresponding to model
A, l=1 nm as a function ofr are presented in Fig. 2. For the

lowest values ofr the suspension behaves almost as an iso-
tropic gas since the corresponding radial and angular distri-
bution functions are structureless. It is to be noted thatpsrd
indicates a preferential parallel orientation of platelets for
c.m. distances of the order of the platelet radius or less, al-
though these configurations are quite rare because of the re-
pulsion between sites. In fact, the parallel orientation is seen
for all r considered, but its relative importance increases
with it. Hence, with an increasingr value the structure
gradually builds up, and is dramatically enhanced for not so
high concentrations. In particular, forr=0.09, the system
shows signatures of long range order corresponding to a
structure of several parallel platelets, as is indicated by the
threegsrd peaks, which are equally separated by a distance
close to 0.35s'. A snapshot of a typical equilibrium configu-
ration of this particular system is depicted in Fig. 3. As can
be seen, the system is composed of several parallel local
arrangements of platelets which are oriented in different di-
rections, thus making the peak ofpsrd very close to 1, with
decreasing height at larger separations. For even higher vol-
ume fractions, a large first peak ingsrd is observed, indicat-
ing an increase of short range parallel order, whereas the
other peaks have a much lower height.

Upon increasingl from 1 to 3 nm the extended range of
the repulsion between sites dramatically enhances the struc-
ture of the suspension, as can be seen in the results presented
in Fig. 4. For example, atr=0.01 the structure is that of a
simple fluid instead of a gas. In addition, the long range
parallel order that forl=1 nm sets in atr=0.09, now pre-
sents itself at the lower volume fraction ofr=0.05. Indeed,
for r=0.09 andr=0.13 an extra peak close to 1.4s' is ob-
tained for thegsrd function.

The influence of the rim charges on the structure and
phase behavior is best understood by comparing the BD re-
sults for modelB with those pertaining to modelA under
similar physical conditions. Inspection of typical configura-
tions in this regime, such as those shown in Fig. 5, clearly

FIG. 5. Typical configuration for modelB with r=0.05 andl
=1 nm. Arrows show a T-shaped(left) and PPO (right)
configuration.

FIG. 6. Radial distribution
functions (continuous line) and
angular distribution function
(dashed line) for model B with l
=1 nm and(a) r=0.01, (b) 0.05,
(c) 0.09, and(d) 0.13.
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points to the formation of clusters which are composed of
two characteristic pair structures. In the first one the platelets
tend to be perpendicular to each other forming a T-shaped
pair configuration. In the second, the platelets tend to be in a
parallel, partially overlapped(PPO) pair arrangement, with
the centers separated by a distance close to 0.85s'. It should
be mentioned that this configuration is not observed if the
noncharged sites that prevent the interpenetration of the
platelets are not accounted. It is then not surprising that this
particular arrangement is not reported in Ref.[15]. Both con-
figurations are pointed out in Fig. 5. Other configurations
involving more than two platelets, such as the house-of-cards
type, are also clearly seen.

These qualitative observations are confirmed by a more
quantitative analysis of the pair structure. Figure 6 shows the
distribution functions for the same physical parameters as
those of Fig. 2 for modelA. The sharp first peak ingsrd and
the corresponding well of thepsrd at a distance slightly
larger than the platelet radius confirms the predominance of
T-shaped pair configurations at short range. A second peak of
lower but significant amplitude is present around 0.85s' for
both radial distribution functions. Hence, this peak is a sig-

nature of the PPO arrangement previously mentioned. The
fact that there is a very structured system at the lowest vol-
ume fraction 0.01 indicates that spontaneous aggregation is
taking place. Hence, this behavior is also expected for even
more diluted systems.

As the volume fraction is increased the amplitude of the
peaks depicted in Fig. 6 drops. In addition, a parallel con-
figuration appears at a separation lower thans' /2, which is
detected by a small hump ingsrd for the volume fractionr
=0.09. The hump ingsrd has a higher amplitude for the
system with volume fractionr=0.13, as can be readily seen
in the comparison of the distribution functions presented in
Fig. 7. This configuration certainly originates from the pack-
ing of the platelets, since it is not energetically favored by
the presence of the rim charges. Another way of visualizing
this phenomenology is by plotting the potential energy of the
system as a function of the volume fraction, as seen in Fig. 8.
It is worth to notice in Fig. 8 that the volume fraction at
which the potential energy has a minimumrmin is close to
0.11. The picture that emerges is that the T-shaped configu-
rations always dominate the structure at all volume fraction
values lower thanrmin, with a less significant contribution
from the PPO configurations. Forr.rmin the parallel con-

FIG. 7. Radial and angular distribution functions for modelB
with l=1 nm and two different volume fractions aroundrmin,
which correspond to Fig. 6(c) and Fig. 6(d).

FIG. 8. Potential energy of modelB with l=1 nm as a function
of volume fractionr.

FIG. 9. Radial distribution
function (continuous line) and an-
gular distribution function(dashed
line) for model B with l=3 nm
and volume fraction(a) r=0.01,
(b) 0.05, (c) 0.09, and(d) 0.13.
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figurations are the only option to make the system more
dense, thus increasing the value of the potential energy, as
can be clearly seen.

Figure 9 presents the results forl=3 nm. For thisl value
the effect of the rim charges is to a great extent screened by
the enhanced range of the surface charges’ potential. In fact,
as shown further in the text, there is no energetic well for the
pair potential that corresponds to the PPO and the T-shaped
configurations. Instead, we found an ever-increasing nonne-
gative potential energy as a function of the volume fraction.

Consequently, no aggregationlike behavior is seen and the
gsrd for r=0.01 behaves as a simple fluid, as in the case of
modelA for the same value ofl. By increasing the volume
fraction, a largegsrd peak is developed that coincides with a
not very pronouncedpsrd well. This indicates that the
T-shaped configurations still appear, although the position of
the peak in the radial distribution function is shifted to larger
separations. This means that the platelets in this T-shaped
configuration are not in contact any more, but separated as
far as possible. Hence, this peak is shifted to the left as the
concentration is increased. All these features are in high con-
trast with respect to thel=1 nm case, in which the position
of this first peak remains at a fairly constant distance of
,s' /2. On the other hand, the peaks that characterize the
PPO pair configurations are no longer present, indicating that
these configurations have disappeared from the bulk. Finally,
the small hump that signals the existence of very closed par-
allel configurations appears at a volume fraction value of
0.05, and is more clearly defined than in the corresponding
values ofr for the casel=1 nm. As in the previous case, we
can conclude that all these features are an effect of the pack-
ing of the system at high volume fraction values.

Self-diffusion coefficients

One of the purposes of this work is to present the results
for the long-time self-diffusion coefficients(SDC’s) of a

FIG. 10. Time-dependent SDCD'
T (square), Di

T (up triangle),
D'

R (down triangle), andDi
R (circle) computed from the BD simu-

lation. Solid, dashed, dotted, and dot-dashed lines are the corre-
sponding fits. The particular case illustrated here corresponds to a
modelB system with volume fractionr=0.13 andl=1 nm.

FIG. 11. Normalized SDC for modelA with l=1 nm (top) and
l=3 nm (bottom) as a function ofr. Dp

n,L were obtained from the
asymptotic value of the fitting function[Eq. (27)]. The symbols in
each figure correspond toD'

T,L (square), Di
T,L (up triangle), D'

R,L

(down triangle), andDi
R,L (circle).

FIG. 12. Normalized SDC for modelB with l=1 nm (top) and
l=3 nm (bottom) as a function ofr. Dp

n,L were obtained from the
asymptotic value of the fitting function[Eq. (27)]. The symbols in
each figure correspond toD'

T,L (square), Di
T,L (up triangle), D'

R,L

(down triangle), andDi
R,L (circle).
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tracer. The BD simulation of a tracer(that is governed by the
direct interactions with the rest of the particles in the colloi-
dal suspension) provides information of the self-diffusion
process as a function of time through the calculation of the
mean-square-displacement, namely,

Wp
TstMd ;

1

N
o
a=1

N KUo
m=1

M

DRa,p
sbd stmdU2L ,

Wp
RstMd ;

1

N
o
a=1

N KUo
m=1

M

Dwa,pstmdU2L , s24d

wherep='x,'y, andi. Thus, the time dependent SDC’s are
defined by

Dp
nstMd ;

Wp
nstMd
2tM

, s25d

wheren=T,R and tM =MDt. In Fig. 10 we show, as an ex-
ample, the time-dependent SDC’s for a modelB system with

FIG. 13. Potential energy for two modelB platelets withl=1 nm and for different configurations.(a) For a T-shaped configuration and
as a function of the c.m.-c.m. distance.(b) For a T-shaped configuration and as a function of the rotation angle.(c) For a PPO configuration,
with a fixed perpendicular projection of the c.m.-c.m. distance at 2.5 nm and as a function of thex projection of the c.m.-c.m. distance.(d)
For a parallel configuration with a c.m.-c.m. distance of 6 nm and as a function of the rotation angle. The solid, dashed, dotted, and
dashed-dotted lines correspond toNq=469, 91, 61, and 37, respectively. The total rim and superficial charges are kept constant.

FIG. 14. Time evolution of the rotational correlation function
p1,p for the samer andl values used in Fig. 10. Solid and dashed
lines are the least-squares, linear asymptotic fit to the data from
which D'

R,L /D'
R,0 (triangles) andDi

R,L /Di
R,0 (squares) are computed.
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r=0.13 andl=1 nm. These SDC’s are normalized with the
free-diffusion coefficients obtained in Sec. II C. In Fig. 10
we can observe a complex decreasing behavior for the dif-
ferent SDC’s as a function of time. Its complexity is due to
the direct interactions the tracer presents with the other plate-
lets. In general, at long times the SDC’s tend to a low finite
value in the limitt→`,

Dp
n,L = lim

t→`
Dp

nstd. s26d

In practice, the different values for the SDC’s at long
times were evaluated through an extrapolation procedure.
This resource is necessary because the BD simulation only
spans a small time interval. The procedure is based on the
definition of a function that fits the simulation data and its
value in thet→` limit is taken as the long-time SDC’s.
Several functions exist to adjust the simulation data[28,29].
Our proposal is

Dp
nstd = Dp

n,L + Ap
nexpf− st/tp

ndmp
n
g, s27d

whereAp
n , tp

n, andmp
n are fitting parameters. Note thatDp

n,L is

not considered as a fitting parameter because it is related to
the free SDC’s at short timesDp

n,0=Dp
n,L+Ap

n. In the Appen-
dix, the values of all fitting parameters obtained for all sys-
tems are reported.

The normalized long-time SDC’sDp
n,L /Dp

n,0 computed
from the fitting function[Eq. (27)] are displayed graphically
in Figs. 11 and 12 for modelsA and B, respectively. It is
observed in any of these figures that, in general, the long-
time SDC’s present a pronounced dependency on the volume
fraction. Asr increases, the value of these coefficients drops
considerably. This effect is not surprising since the transla-
tional mobility of the particles is drastically reduced at high
volume fraction values. Nevertheless, the very low SDC’s
found might point to gel formation. Note that these low
SDC’s are obtained for both models and for similarr values.
In addition, it is also to be noted that a lower value ofr is
enough to produce such small values of the SDC’s for higher
l. On the other hand,Di

R,L /Di
R,0 behaves quite differently.

For modelA andl=1 nm, its value remains constant for all
r studied, whereas forl=3 nm, its value drops only at very
larger values. In fact, this behavior was expected since ro-
tations around the axis normal to the platelet surface should
not change the free energy of the system, i.e., the platelets
are free to make these movements because of their symme-
try. Nevertheless, due to the charge discretization the plate-
lets partially break their symmetry, and hence oscillations in

FIG. 15. Normalized rotational SDC’s for modelA with l
=1 nm (top) and l=3 nm (bottom) as a function of the volume
fraction r. Filled symbols correspond to SDC’s computed from the
asymptotic value of the fit to the function(27), whereas open sym-
bols correspond to values computed from the slope of Eq.(30).

FIG. 16. Normalized rotational SDC’s for modelB with l
=1 nm (top) and l=3 nm (bottom) as a function of the volume
fraction r. Filled symbols correspond to SDC’s computed from the
asymptotic value of the fit to the function(27), whereas open sym-
bols correspond to values computed from the slope of Eq.(30).
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the pair potential appear, as is shown in Figs. 13(b) and
13(d). The fact thatDi

R,L /Di
R,0 decreases forl=3 nm is just

due to the enhanced range of the repulsive potential. For the
other normalized SDC’s, it is seen that they present a similar
behavior, i.e., they strongly decrease as the volume fraction
increases. One should note thatD'

R,L /D'
R,0 is affected in a

similar way to that already observed for the translational
SDC’s. Obviously, movements around thex and y axes are
strongly hindered for large concentrations. In particular, the
value of Di

T,L /Di
T,0 is systematically lower than that of

D'
T,L /D'

T,0 for l=1 nm in the entirer value range. This effect
is explained by the fact that, asr increases, parallel configu-
rations are favored, and so the mobility along the plane par-
allel to platelet surfaces is less hindered than the mobility
perpendicular to that plane. Forl=3 nm, however, this ef-
fect is no longer observed. Instead, it is seen from Fig. 11(b)
that ther dependency is enhanced for all the translational
coefficients.

As was already mentioned, the results of the long-time
SDC’s for modelB are presented in Fig. 12. In general, simi-
lar features to modelA are observed. That is,Di

R,L /Di
R,0 does

not depend significantly on the volume fraction as the other
SDC’s do, and the dependency of the SDC’s withr is more
pronounced forl=3 nm. There are, however, some differ-
ences. Due to the fact that, forl=1 nm, the system aggre-
gates even for the very diluted cases, theDp

n,L /Dp
n,0 values are

smaller than those corresponding to modelA. This result is
no longer valid for larger concentrations. Note that, forl
=1 nm, Di

R,L /Di
R,0 is always smaller than one, which is a

consequence of the potential energy oscillations of the
T-shaped configuration for rotational movements around the
z axis [see Fig. 13(b)]. For l=3 nm the effect is the same as
that already observed in modelA. Translational and rota-
tional motion are hindered by the repulsion at high volume
fractions, and so the corresponding SDC’s decrease in com-
parison to their values for thel=1 nm case.

Comparison with other methods. In order to verify the
validity of the employed method for calculating the rota-
tional SDC’s, we recalculate them by using a different one.
This alternative method was originally employed in Ref.[20]
for rodlike particles which interact via a two-site Yukawa
potential. The rotational motion of disk-shaped particles,
such as those studied in this work, can be conveniently char-
acterized using the single-particle orientational time-
correlation functions

Cl,pstd = kPl„epstd ·eps0d…l , s28d

where Plsxd is the lth Legendre polynomial andep is the
vector along the principal axis(p='x,'y, and i). These
functions are used to describe the light scattering data of a
colloidal tracer particle[30]. For very dilute solutions the
rotational motion is a pure diffusive process, so the Debye
rotational diffusion equation is applicable. This leads to an
exponentially decaying correlation function

Cl,pstd = expf− lsl + 1dDp
R,0tg. s29d

Clearly, the potential interactions modify this purely expo-
nential decay. Thus we study the first orientational correla-

tion function that is obtained from Eqs.(28) and (29),
namely,

p1,pstd = −
lnkP1stdl
2 Dp

R,0t
. s30d

The time behavior of functionp1,pstd, Eq.(30), which is plot-
ted in Fig. 14, shows that initially this function increases
linearly, with a slope value of 1, with time. Thus, for a very
short time intervalst,5 nsd, the particles rotate as in a dilute
solution. For very long times(not shown), the function
kP1stdl deviates from the purely exponential decay and dis-
plays a complicated nonlinear behavior, which makes diffi-
cult to obtain quantitative predictions. However, for interme-
diate times the behavior is sufficiently smooth to allow a
linear fit over a representative time interval. From Fig. 14 it
is observed that, when passing from a regime of short times
to a regime of intermediate times, a decrease of the slope
from 1 to Dp

R,L /Dp
R,0 is obtained.

The coefficientsD'
R,L /D'

R,0 andDi
R,L /Di

R,0, computed from
the slope ofp1,pstd over a time interval that is highly depen-
dent on the particular case studied, are compared with the
corresponding coefficients obtained from the fitting function,
Eq. (27), in Figs. 15 and 16 for modelsA andB, respectively.
In these figures we can observe the agreement between both
methods for alll values studied. Now, for both modelsA
and B, the error inDi

R,L /Di
R,0 computed from the slope of

p1,istd is always higher than the corresponding error com-
puted from the asymptotic fit[Eq. (27)]. This behavior is
more pronounced for values ofDi

R,L /Di
R,0 close to 1.

IV. PAIR POTENTIAL ANALYSIS

In order to check the effect of discretizing the charge on
the surface of the Laponite model, we carried out a pair
potential analysis by considering several numbers of charged
sitesNq. In particular, we present the results for modelB and
different pair configurations in Fig. 13. Here, Fig. 13(a)
shows the pair potential energy for platelets in a T-shaped
configuration as a function of the c.m.-c.m. separation and
for l=1 nm. As can be seen, all curves present a minimum
for distances slightly larger thans' /2 (even for theNq
=469 case, although, its value is close to zero). The depth of
the well, however, strongly depends onNq. That is, if the
charge discretization is increased, the depth of the energy
well also increases. This effect is due to the large amount of
charge per site at high discretization values, which allows a
decrease in the energetic contribution of two unlikely
charged sites close to each other, and also due to the fact that
equally charged sites on the surfaces of the platelets become
more separated.

For this same configuration the effect of the rotation on
the potential energy as a function of the displacement angle
is presented in Fig. 13(b). For all Nq values the potential is
always attractive, although its strength greatly diminishes
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with an increasingNq value. Furthermore, the potential
curves oscillate around given mean values. Note that the
number of maxima and minima coincides with the number of
rim sites. Naturally, the oscillations are more pronounced as
the number of sites is reduced. ForNq=469, the oscillations
turn almost negligible. These oscillations in the pair poten-
tial, which lead to a symmetry breaking, explain the decrease
of Di

R,L /Di
R,0 with an increasing platelet concentration.

As previously seen, modelB presents another type of ar-
rangement that was found to be present in the system bulk.
This is the PPO configuration which is considered in Fig.
13(c). Here, the pair potential is plotted against thex projec-
tion of the c.m.-c.m. distance. As can be seen, the curves
show an attractive well in the potential located at a separa-
tion slightly larger than 0.75s'. At this position, the rim
charges of one platelet are faced to the surface charges of the

other and vice versa, creating a minimum in the configura-
tional potential energy. For a separation of<s' the potential
has a repulsive hump, which is explained by the fact that, at
this distance, the rim charges of both platelets are at the
closest possible distance. As in the case of the T-shaped con-
figuration, increasingNq diminishes the depth of the attrac-
tive well and shifts its location to larger separation values. It
is important to note that, even forNq=469, there is still an
attractive well in the potential, but with a very small depth.

It should be mentioned that the attractive wells shown in
Figs. 13(a) and 13(b) are enhanced for smaller values ofl,
higher values ofQT, and higher ring charges. Even forNq
=469, deep wells are obtained if the parameters are some-
what changed. In particular, we obtain a 8kBT depth well in
Fig. 13(a) for QT=850 e,l=0.8 nm, and a positive ring
charge equal to 0.12QT, which is not very far from the one

TABLE I. Fitting parameters corresponding to modelA, l=1, and 3 nm.tp
n is given in nanoseconds.

l=1 nm l=3 nm

r n ,p Ap
n /Dp

n,0 tp
n mp

n Ap
n /Dp

n,0 tp
n mp

n

0.01 T,' 0.0242 84.82 0.9588 0.1258 43.90 0.9873

T,i 0.0609 310.2 0.5391 0.1560 47.83 1.2912

R,' 0.0111 5.883 0.7234 0.0507 70.16 1.5426

R,i 0.0075 2.299 0.9442 0.0017 2.911 3.4551

0.03 T,' 0.1599 83.53 0.9603 0.8536 39.26 0.6429

T,i 0.5537 680.0 0.6372 0.8795 22.00 0.6011

R,' 0.1482 77.82 0.9851 0.8214 114.3 0.6011

R,i 0.0059 2.065 2.5883 0.0832 3.929 4.5756

0.05 T,' 0.4904 251.0 0.6088 0.9383 13.54 0.5271

T,i 0.6423 79.76 0.6989 0.9494 5.407 0.4443

R,' 0.5122 143.5 0.7444 0.9421 17.07 0.5583

R,i 0.0133 9.710 1.5725 0.0084 8.702 3.0645

0.07 T,' 0.6590 138.2 0.6135 0.9519 6.676 0.5018

T,i 0.8109 41.59 0.5870 0.9637 2.096 0.3980

R,' 0.6872 76.84 0.6905 0.9630 6.632 0.5015

R,i 0.0079 12.35 0.7280 0.0233 1.069 6.1141

0.09 T,' 0.8205 75.46 0.6354 0.9503 3.969 0.5022

T,i 0.8814 18.30 0.5232 0.9720 1.037 0.3765

R,' 0.8769 46.24 0.5827 0.9720 3.321 0.4857

R,i 0.0089 47.36 3.9826 0.0110 3.829 0.4329

0.11 T,' 0.8483 32.50 0.5856 0.9810 3.126 0.4404

T,i 0.9211 8.545 0.4670 0.9851 0.550 0.3244

R,' 0.9020 20.17 0.5596 0.9904 1.983 0.4332

R,i 0.0286 4.232 8.7700 0.0385 6.653 0.9897

0.13 T,' 0.8496 93.25 0.5814 0.9767 2.180 0.4373

T,i 0.9366 22.01 0.4585 0.9781 0.358 0.3350

R,' 0.9248 52.14 0.5412 0.9923 1.315 0.4240

R,i 0.0398 140.7 1.3027 0.2194 19.81 0.5954

0.15 T,' 0.8971 12.35 0.5863 0.9854 1.794 0.4225

T,i 0.9488 2.528 0.4440 0.9882 0.208 0.2988

R,' 0.9525 6.126 0.5170 0.9939 0.850 0.4116

R,i 0.0073 0.982 1.3570 0.3614 8.074 0.6945
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obtained forNq=61. We should remark that the surface and
ring charges of Laponites vary depending on the way they
are synthesized[7], and so, these other parameters and the 61
sites model are still representative of a Laponite particle.

Figure 13(d) reports the variation of the potential energy
as a function of the rotational displacement between two
model B parallel platelets. The interaction is dominated by
the repulsion of the equally charged sites in both platelets.
However, for rotational displacements of one platelet with
respect to the other, the effect of the charge discretization is
seen again as an oscillation of the potential around a mean
value. The maximum value of the oscillations corresponds to
an arrangement in which the rim charges of the two platelets
are closest, and the minimum to the opposite case. Since the
platelets are more separated than in the case of the T-shaped
configuration, the oscillations are less pronounced. Indeed,

they are almost imperceptible for not so large values ofNq.
These oscillations explain the slight decrease ofDi

R,L /Di
R,0

for modelA l=3 nm, where no T-shaped configurations are
present.

Although it is not shown, a similar analysis was per-
formed for thel=3 nm case. Here, the effective range of the
potential is greatly extended, leading to strong effects in the
pair interaction between platelets if compared with thel
=1 nm case. Here, we observed that the potential well dis-
appeared for both the T-shaped and PPO configurations, and
for all Nq values considered. This explains the result of an
ever-increasing system energy as a function of the volume
fraction for this case.

In modelA, the potential energy is purely repulsive, and a
pair configuration of parallel platelets is favored, since this
type of arrangement avoids the closeness of sites, and hence

TABLE II. Fitting parameters corresponding to modelB, l=1, and 3 nm.tp
n is given in nanoseconds.

l=1 nm l=3 nm

r n ,p Ap
n /Dp

n,0 tp
n mp

n Ap
n /Dp

n,0 tp
n mp

n

0.01 T,' 0.2212 8.930 0.4607 0.1474 161.7 1.2934

T,i 0.1657 2.637 0.6856 0.5217 476.2 0.8386

R,' 0.2770 33.22 0.4914 0.0009 81.30 0.7990

R,i 0.0485 3.961 0.4954 0.0028 12.31 0.6234

0.03 T,' 0.5244 24.04 0.3555 0.8083 63.68 0.7197

T,i 0.4546 7.775 0.3779 0.8228 64.77 0.6607

R,' 0.4721 41.60 0.4315 0.3369 163.7 1.0156

R,i 0.0596 3.011 0.7148 0.0201 71.84 3.0404

0.05 T,' 0.5269 13.55 0.4409 0.9217 19.61 0.5808

T,i 0.5726 9.605 0.3330 0.9301 15.83 0.5480

R,' 0.6460 87.40 0.4581 0.8157 125.5 0.7118

R,i 0.0789 12.47 1.0297 0.0539 32.21 0.746

0.07 T,' 0.6565 7.775 0.4257 0.9459 7.814 0.5168

T,i 0.7664 11.13 0.3264 0.9506 5.278 0.4963

R,' 0.7371 22.87 0.4237 0.8778 28.77 0.6043

R,i 0.1541 3.028 0.7360 0.0329 7.624 1.0595

0.09 T,' 0.8708 13.86 0.3474 0.9503 3.652 0.4945

T,i 0.8932 11.59 0.3150 0.9625 2.217 0.4389

R,' 0.8467 19.70 0.4082 0.9191 9.205 0.5569

R,i 0.2176 5.780 0.6744 0.1444 7.349 0.6307

0.11 T,' 0.8263 7.599 0.4285 0.9580 2.020 0.4767

T,i 0.8684 6.206 0.3689 0.9647 1.088 0.4399

R,' 0.8274 12.64 0.4532 0.9493 4.505 0.5121

R,i 0.2343 6.095 0.7188 0.3029 4.356 0.6867

0.13 T,' 0.8694 6.506 0.4570 0.8292 0.721 0.6587

T,i 0.9284 4.416 0.3742 0.9429 0.553 0.4751

R,' 0.8651 11.57 0.4626 0.9320 2.035 0.5287

R,i 0.2596 11.39 0.6312 0.5453 3.273 0.6622

0.15 T,' 0.8633 4.209 0.4696 0.8332 0.453 0.6559

T,i 0.9132 1.978 0.4191 0.9197 0.296 0.5402

R,' 0.8579 6.679 0.4994 0.8209 1.500 0.6359

R,i 0.2587 6.028 0.9539 0.5650 1.473 0.6476
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lowers the potential energy. This is why we omitted a de-
tailed study of the pair potential of this model.

V. CONCLUSIONS

In this paper we presented a systematic study of two
simple models for a synthetic clay by means of BD simula-
tions. These models mimic the Laponite’s charge behavior
when dispersed by a solvent at differentpH conditions.
Hence, a model with equally charged sites, modelA, and
another with rim charges of opposite sign, modelB, were
considered. Static and dynamic properties were studied for
both models for two different values of the Debye length and
several volume fractions that span a wide range of concen-
trations.

Our results reproduce to a great extent the complex me-
sostructure and rich phase behavior previously reported for
similar models studied by MD simulations[15]. However,
due to the addition of several sort-range repulsive sites that
impede the interpenetration of the platelets, our simulations
predict another nonreported type of configuration for model
B. This is a parallel, partially overlapped arrangement in
which the rim charges of one platelet are faced to the surface
charges of the other and vice versa. As shown in Sec. IV, this
configuration also shows an energetic well when plotted
against the c.m.-c.m. distance between platelets. This well,
and the one yielded for the T-shaped configuration, explains
why the system’s energy decreases with increasing platelet
concentration up to a given volume fraction. For concentra-
tions over this volume fraction, the tendency is reversed due
to the appearance of crowded parallel configurations. This
exemplifies the complex behavior of this kind of system.

On the other hand, the BD technique allows the proper
study of time dependent SDC’s from which the asymptotic
SDC’s are extrapolated. This was done by two different
methods which yield very similar values, and hence, cor-
roborate the physical relevance of the results. As expected,

the SDC’s are strongly influenced by the structure of the
suspension. For example, for those systems with a preferen-
tial parallel structure, the translation parallel to the axial axis
of each platelet(normal to the platelet surface) is most hin-
dered. In addition, it was shown that increasing the Debye
length or increasing the platelet concentration leads to a re-
duction of the SDC’s. This reduction is quite large for large
enough volume fractions, suggesting the formation of a gel
phase. The only exception was seen for the SDC associated
with rotations around the axial axis. This SDC diminishes
only when the effect of the charge discretization becomes
important.

We would like to point out that considering just 61
charged sites to model the charged surface of the Laponite
particles is nowadays a necessary simplification, due to the
computational effort that would surely lead to qualitative dis-
crepancies with the predictions of a model having 700
charged sites and the same parameters. This is supported by
the analysis performed in Sec. IV. On the other hand, if pa-
rameters such as the surface charge, edge charge, and Debye
length are allowed to change for obtaining a match between
both pair potentials, similar results are expected from the
models based on 61 and 700 charged sites.

Finally, this work can be seen as a step along the way
towards the study of other interesting properties, such as vis-
cosity. This property is very important for practical purposes
such as well drilling operations.
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APPENDIX: FITTING PARAMETERS

In Tables I and II, the values of the fitting parameters of
Eq. (27) to the long-time SDC are presented for the different
systems studied.
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